—continued—

Quicke). Announcements were made on our new executive selectees (Jim Whitfield and Lars Krogmann) and our ISH Distinguished Research Medal winner (Brad Vinson), and our Distinguished Service award winner (Andy Deans). Congratulations come from all of us here at the meeting.

This meeting has set the stage for our next international meeting in Cusco, Peru (details below) in 2014. Hopefully, we will see all of you there.

8th International Congress of Hymenopterists

Cusco, Peru
July 20–25, 2014

Hotel: Casa Andina
Meeting: Centro de Convenciones Cusco

A significant word in Aphelinid (Chalcidoidea) Taxonomy - Prof. Dr. V.A. Yasnosh passed away

By: G. Japoshvili (Entomology and Biocontrol Research Centre, Agricultural University of Georgia, Tbilisi, Georgia) and Ts. Chkhubianishvili (L.Kanchaveli Institute of Plant Protection, Agricultural University of Georgia, Tbilisi, Georgia)

In 3 August of 2011 after several months of illness we lost one of the best taxonomists in her group, Aphelinids, well known biocontrol specialist and brilliant professional, colleague and person Prof. Dr. V.A. Yasnosh.

Prof. Dr. V.A. Yasnosh was born in 9 September 1924 in St-Petersburg. She graduated Agricultural Institute, Faculty of Plant Protection in St-Petersburg in 1946 and got PhD degree in the Plant Protection Institute in 1951. Her Thesis was – “Japanese wax scale in Abkhazia (Ceroplastes japonicus Green, Homoptera, Coccoidea)”. In 1977 she made a thesis - “Morpho-biological peculiarities and taxonomy of Aphelinids (Hymenoptera, Chalcidoidea, Aphelinidae)” and got Degree of Doctor of Biological Sciences. She was appointed as a professor in 1991.

Her scientific carrier was as following: Entomologist, Laboratory of Plant Quarantine Service, Tbilisi (1953-1966); Major Research Scientist, Laboratory of Biological control, Plant Protection Research Institute of Georgia (1966-1976); Head of laboratory, then - Department of Biological Control (1976-1997); Kanchaveli L. Research Institute of Plant Protection, Tbilisi, Georgia, Principal Research Scientists (1997-2010).

She was a member of the Russian Entomological Society (1949), the Georgian Entomological Society (1965) and the Georgian Academy of Ecological Science (1995).


continued—

Prof. Dr. V.A. Yasnosh (1924–2012)
Agricultural Sciences, Georgia.

She published more than 180 scientific papers and several monographs. She was working in different fields of science such as: Biocontrol, Taxonomy, Ecology and etc., however her significant achievement was in taxonomy of Aphelinids. Her works (Nikolskaja, Yasnosh, 1966, 1968 and Yasnosh, 1953-2002) are important word in the study of Chalcid wasps. Under the supervision of Prof. Yasnosh was prepared several PH.Ds in entomology and biological plants protection, almost until the end of her life she participated at International Project on Biological Plant Protection as the Scientific Consultant.

Her colleagues from Georgia and all over the world express their condolence.

Hymenopterans associated with Neotropical aroids

By: Paul E. Hanson (Escuela de Biología, Universidad de Costa Rica), Michael W. Gates (Systematic Entomology Laboratory, c/o National Museum of Natural History, Washington, D.C.), Sergio Jansen González (Universidade de São Paulo, Ribeirão Preto, Brazil)

There could be a much greater number of phytophagous apocritan species than is currently appreciated. We are referring to taxa whose larvae induce plant galls or feed in seeds (the distinction is not always clear), but are derived from parasitoid ancestors. Besides Cynipidae and Agaoni- dae, phytophagous species are known to occur in several other families of Chalcidoidea as well as in a few bracon- nids.

We are currently focusing our attention on Chalcidoidea associated with aroids (Araceae) in the neotropical region. In temperate regions these plants are best known as house plants, but in the tropics aroids are very common and diverse; indeed, large-leaved Monstera and Philodendron are emblematic of tropical rainforests. They are readily recognizable by their unique spathe and spadix flowers, some of which produce heat to attract scarab pollinators. Aroids are, however, frustrating to sample, since the majority grow as epiphytes (or hemi-epiphytes) in the canopy.

For his doctoral research Sergio is currently comparing how reproductive plant tissues are modified by aga- onids in Ficus (Moraceae) versus a tetrastichine eulophid in Philodendron bipinnatifidum. This tetrastichine was described by Ferrière (1924) as Trichoporus gallicola, later transferred to Exurus and then Aprostocetus, but as noted by LaSalle (2005), this species in fact represents a new genus. In consultation with John LaSalle, the three of us are currently describing this new genus, which includes not only Ferrière’s species but at least two or three (probably more) additional species associated with other Philodendron species. Besides Ferrière’s paper, the only other published account of the biology of this tetrastichine is that by Gibernau et al. (2002; Marc Gibernau has kindly sent us specimens).

Among our long-term questions are: How host-specific are the species in this new genus? Do they occur on other genera of Araceae, or are they restricted to Philodendron? As noted in Ferrière’s original paper, there is also a phyto- phagous Prodecatoma (Eurytomidae) associated with the same reproductive structures on Philodendron. Species of Prodecatoma appear to be much more widely distributed across plant taxa and are sometimes found in association with other phytophagous hymenopterans. Recently, we reared a series of Prodecatoma from fruits of Anthurium (Araceae), but in this case no other insects were present.

In addition to the fruiting structures, other parts of the aroid plant also harbor phytophagous hymenopterans. It is possible that all species of Monitoriella (Braconidae: Doryctinae) are gall-formers on the leaves of aroids (at least on Philodendron), although only one species is currently documented as doing so (Infante et al. 1995). Aroids also have root galls, most of which are probably formed by Cecidomyiidae, though we suspect that the rarely collected Foutsia (Eurytomidae) may also be a gall former on the roots. We have reared long series of tetrastichines from aroid root galls, but it remains to be determined whether these are parasitoids of Cecidomyiidae or phytophagous or some of each.

As part of this research, Paul visited Mike in Washington... continued—